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Influence of various water quality sampling strategies 
on load estimates for small streams 
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Abstract. Extensive streamflow and water quality data from eight small streams were 
systematically subsampled to represent various water-quality sampling strategies. The 
subsampled data were then used to determine the accuracy and precision of annual load 
estimates generated by means of a regression approach (typically used for big rivers) and 
to determine the most effective sampling strategy for small streams. Estimation of annual 
loads by regression was imprecise regardless of the sampling strategy used; for the most 
effective strategy, median absolute errors were -30% based on the load estimated with an 
integration method and all available data, if a regression approach is used with daily 
average streamflow. The most effective sampling strategy depends on the length of the 
study. For 1-year studies, fixed-period monthly sampling supplemented by storm chasing 
was the most effective strategy. For studies of 2 or more years, fixed-period semimonthly 
sampling resulted in not only the least biased but also the most precise loads. Additional 
high-flow samples, typically collected to help define the relation between high streamflow 
and high loads, result in imprecise, overestimated annual loads if these samples are 
consistently collected early in high-flow events. 

1. Introduction 

Various approaches have been used to quantify the total 
transport (load) of specific constituents past a fixed point on a 
stream. In most of the more accurate approaches it is assumed 
that discrete water quality samples are collected and that con- 
tinuous or at least daily average streamflow records are avail- 
able or can be estimated. The most common approach is to 
estimate loads by means of continuous (at least daily) concen- 
tration and streamflow traces. Loads are then estimated by 
multiplying the continuous concentration trace by the contin- 
uous streamflow trace. A continuous concentration trace can 

be developed by either of two approaches: the integration 
method and the rating curve, or regression, method. In the 
integration method, constituent concentrations are plotted 
through time, and hydrologic judgement is used to extrapolate 
between the measured concentrations [Porterfield, 1972]. Inte- 
gration is generally considered to be the most accurate method 
to estimate loading at all timescales if sufficient data are col- 
lected to describe the changes in water quality, especially if 
samples are collected throughout the largest high-flow events 
during the period of interest. It is difficult, however, to place 
confidence limits on loads estimated with this approach. For 
accurate load estimations, "sufficient data" often means that 
many samples must be collected to reflect the variability in 
water quality; thus the integration method is the most expen- 
sive approach. Loads calculated by use of this method are often 
used as a reference to evaluate results from other methods. 

The regression method usually uses a relation found be- 
tween concentration (or load) and daily average flow (and 
other independent variables) to estimate daily concentrations 
(or loads) of the constituent, although it has also been applied 
using instantaneous and hourly average flows. The regression 
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method began as simple linear relations between concentra- 
tion (or load) and flow but has been modified to account for 
nonlinearities, seasonal and long-term variability, censored 
data, biases associated with using logarithmic transformations, 
and serial correlations in the residuals of the analyses [Cohn, 
1995]. This approach has come into widespread use because it 
requires'less data than integration does, produces estimates for 
periods beyond when concentration data were collected, and 
enables confidence limits to be placed on the estimates. The 
regression method is often used with very small data sets that 
have been assembled over several years. 

With the regression method one typically uses daily average 
streamflow to estimate daily average concentrations (or loads) 
because this is the resolution of most streamflow databases. 

Therefore each concentration and streamflow combination 

(and any other independent variable) used in the regression is 
assumed to be representative of the average daily conditions 
when the data were collected. Instantaneous flows are com- 

monly measured during sampling; however, these data are not 
usually used in the analysis because the daily average flows are 
used with the regression equations to estimate total loads and 
confidence limits. In this type of analysis, if more than one 
sample was collected during a given day, each concentration 
would be assigned the same daily average flow. Therefore 
high-flow samples should be randomly collected throughout 
the day during high-flow events. This type of regression ap- 
proach is usually considered to be a "big river" approach be- 
cause it is based on the assumption that samples represent the 
daily average concentration and it estimates changes in con- 
centration (or loads) on a daily time step. However, this ap- 
proach has been commonly used to estimate loads in small 
streams in which concentrations can change rapidly [Walker, 
1996]. 

Because of financial constraints the number of samples that 
can be collected and analyzed is often limited. Therefore sam- 
pling for the integration approach is usually designed to collect 
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Figure 1. Effects of sampling strategy on number and distri- 
bution of samples for two small streams. Intensive sampling 
was used at Bower Creek, Wisconsin, and fixed-period sam- 
pling supplemented with a few high-flow samples at East River, 
Wisconsin. 

samples rather sparsely when concentrations are thought to be 
stable (such as during base flow) and intensely when concen- 
trations are thought to be changing (such as during high flow). 
An example of data collected in this manner is shown for 
Bower Creek, Wisconsin, in Figure 1. In most studies the 
sampling budget requires more restrictive sampling (shown in 
Figure 1 for the East River, Wisconsin). The similarity in water 
quality of the two streams can be inferred by examining just the 
Bower Creek data collected with the East River sampling fre- 
quency. Infrequent sampling is often inadequate to directly 
describe the changes in water quality and usually misses the 
highest concentrations. Therefore the infrequent data must be 
used to extrapolate concentrations during most of the time 
period. 

How well infrequently collected data, such as that collected 
for the East River, can be extrapolated to the entire time 
period depends on how well the changes in concentration are 
related to other independent variables. Concentrations of 
many constituents have been shown to be directly related to 
streamflow. For many constituents, concentrations increase 
very rapidly during increasing flow, peak prior to maximum 
flow, and then decrease more slowly during decreasing flow 
(hysteresis). These general changes in concentration associ- 
ated with changes in flow are characteristic of sediment, total 
phosphorus, pesticides, and other sediment-derived constitu- 
ents [Richards and Holloway, 1987; Richards and Baker, 1993]. 
Concentrations of other constituents, such as nitrates or chlo- 
rides or constituents from point sources, often decrease with 
increasing flow because of dilution. How quickly concentra- 
tions change in a stream often depends on the variability in 
flow, which in turn depends on the size of the basin and the 
surficial deposits, slope of the terrain, and land use in the 
basin. In some small streams, flow and concentrations increase 
to very high levels and decrease back to baseline within 1 day. 
Changes in streamflow and total phosphorus concentrations 
during a high-flow event in Bower Creek are shown in Figure 2. 

The goal of this analysis is to determine the most effective 
sampling strategy for computing loads in small streams when 

only limited samples can be collected, and therefore the re- 
gression method is used. 

1.1. Sampling Strategies 

Various sampling strategies have been used to collect data to 
estimate loads to take advantage of the systematic or nonsys- 
tematic changes in concentration. A full integration design 
typically includes fixed-period, manually collected, monthly or 
semimonthly samples supplemented with many miscellaneous 
samples collected during high flows, such as sampling con- 
ducted by the Nonpoint Program of the U.S. Geological Survey 
(USGS) Wisconsin District [Graczyk et el., 1993]. Typically, 
this program collects 100-200 samples per year per site for 
small streams, i.e., less than ---100 km 2 (Figure 1). Automated 
equipment is commonly used to collect samples when stream- 
flow is rapidly changing, especially for small streams. Because 
the automated equipment can collect nonrepresentative sam- 
ples, coinciding manual and automated samples are generally 
collected and correction coefficients are calculated and applied 
if needed. 

Another sampling strategy is to manually collect samples at 
a fixed interval (monthly or more frequent). The Wisconsin 
Department of Natural Resources (WDNR) collects samples 
monthly [Tiegs, 1986] and the Illinois Environmental Protec- 
tion Agency collects samples every 6 weeks [Illinois Environ- 
mental Protection Agency, 1996]. Other sampling strategies are 
between these two extremes and have fixed-period sampling 
supplemented with a few samples collected during high flows. 
The typical design of National Water-Quality Assessment 
(NAWQA) Program [Hirsch et el., 1988], a nationwide sam- 
pling effort by the USGS, is to collect fixed-period monthly 
samples supplemented by four to eight manually collected 
high-flow samples per year for ---2.5 years [Gilliom et el., 1995]. 
This design results in ---18 samples per year and ---45 samples 
over 2.5 years for both large rivers and small streams. Loads 
estimated from these data are often computed by use of a 
regression approach (D. K. Mueller, USGS, written commu- 
nication, 1998). 

If a regression approach is to be used to compute loads, the 
additional high-flow samples are usually attempted to be col- 
lected over a range of flows. How the additional high-flow 
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Figure 2. Changes in total phosphorus concentration during 
a high-flow event in a small stream in 1993 (Bower Creek, 
Wisconsin). Samples collected for various sampling strategies 
are identified with respect to flow and concentration. 
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samples are collected and how many event• are sampled de- 
pend on resources. With limited high-flow sampling, the addi- 
tional samples are usually collected manually when a sampling 
crew can get to the stream or by use of single-stage samplers 
that collect a sample as the water level exceeds a given storm 
stage [Edwards and Glysson, 1988]. In slowly responding big 
rivers, samples can easily be collected throughout the changes 
in the hydrograph. In small flashy streams, however, a sampling 
crew chasing storms might be expected to collect samples later 
in the events, resulting in a bias toward lower concentrations, 
whereas automated sampling techniques like single-stage sam- 
plers collect samples earlier in the event and might be biased 
toward higher concentrations. Fixed-period sampling usually 
results in random samples collected throughout a range in 
streamflows, but because high flows are infrequent, they are 
generally underrepresented. 

Although sampling strategies vary among monitoring pro- 
grams, many programs have a common goal: to estimate the 
total load of various constituents transported in the stream. 
Regression methods are probably the most common approach 
for estimating loads because the infrequent data collected in 
most monitoring programs require concentrations and loads to 
be estimated during the large gaps between samplings. Use of 
regression methods poses certain questions: How accurate are 
regression techniques with infrequent data, especially for small 
streams? How do various sampling strategies affect this accuracy? 

1.2. Accuracy in Load Estimates 

The accuracy of the regression approach at estimating an- 
nual loads has been evaluated in only a few cases. Walling and 
Webb [1981] used hourly suspended sediment data, derived 
from continuous turbidity measurements, collected over 7 
years to estimate "true" annual sediment loads for a small 
stream in the United Kingdom, using the integration approach. 
These data were then used to determine the accuracy and 
precision of the regression approach using subsamples of these 
data chosen on the basis of fixed intervals (1-14 days) and a 
fixed interval (7 days) supplemented with additional random 
samples collected during high flows. Between 365 and 1365 
samples were used to calibrate simple exponential models us- 
ing both hourly and daily streamflow. They found that the 
regression approach using either hourly and daily average 
streamflow consistently underestimated the annual sediment 
load by 23-83%. Walling and Webb [1988] obtained similar 
results for other small streams and found that the bias could 

not be easily corrected for by use of transformation adjustments. 
Dolan et al. [1981] and Preston et al. [1989] evaluated the 

regression approach for two large rivers (Grand and Saginaw 
Rivers). Virtually daily data were used to estimate a true load 
using the integration approach. These values were compared 
with estimates made by the regression approach using daily 
average streamflow and randomly selected subsets of the water 
quality data (12 samples to represent monthly, 4 to represent 
quarterly, etc.) or stratified random data sets (randomly 
monthly plus randomly during high flows) by means of Monte 
Carlo methods. They demonstrated average biases and stan- 
dard deviation in the errors in annual total phosphorus loads to 
be <10% when using -24 samples a year. They found only 
very minor improvement in the estimates when substituting 12 
monthly samples plus 12 event samples for the 24 semimonthly 
samples. In general, the regression approach (with the im- 
provements described by Cohn [1995]) has been shown to 
provide nearly unbiased estimates with relatively low variance 

for large rivers, although in some cases very large errors can 
result [Cohn et al., 1992]. 

As part of the Nonpoint Program of the USGS and WDNR, 
extensive phosphorus and suspended solids and sediment data 
were collected for several small streams in Wisconsin [Owens et 
al., 1997]. At each site, samples were collected at fixed intervals 
and throughout most high-flow events. These data were used 
to estimate phosphorus and suspended solids and sediment 
loads by use of the integration approach [Porterfield, 1972]. In 
this paper, we use various sampling strategies to subsample the 
data collected for eight of these streams and then use the 
regression approach using daily average flow to compute an- 
nual loads for each stream [Cohn et al., 1989]. In other studies 
that have examined how various sampling strategies affect load 
computations, subsampling was done at a fixed interval or in 
some random order, such as randomly throughout the entire 
data set or randomly during low and high flows, and often, 
many samples were used to derive the regression relations. 
However, in this study, subsets were based on specifically de- 
fined sampling protocols, similar to protocols actually used by 
sampling crews and limited in number to what is often col- 
lected. Load estimates generated from subsets of the data are 
compared with those computed with the integration method to 
determine the accuracy and precision of regression techniques 
using daily average flow, which is often used for small streams 
with infrequent data and to determine how the accuracy and 
precision changes with various sampling strategies. We then 
compare this accuracy with the flashiness of the streams to see 
whether the most effective sampling strategy for small streams 
depends on their relative responsiveness in flow. 

2. Study Sites and Methods 
2.1. Study Sites 

The eight small streams are located in agricultural areas of 
the southern half of Wisconsin and have drainage areas that 
range in size from 14 to 110 km 2 (Table 1). Each site was 
instrumented to continuously record water levels and compute 
flow by use of a stage-discharge relation. Water samples were 
collected manually at fixed intervals (approximately every 2 
weeks from March through October and monthly in other 
months) by use of the equal width increment (EWI) method 
described by Guy and Norman [1970] and throughout high-flow 
events by use of stage-activated, refrigerated, automatic sam- 
plers [Graczyk et al., 1993]. At each site between -90 and 195 
water samples were collected each year (Table 1; -20 fixed- 
period samples and usually 6-10 samples in each of -10-20 
storms annually) and analyzed for total phosphorus (TP) and 
either suspended solids or suspended sediment (Table 1). In 
the analysis, annual loads of suspended solids and suspended 
sediment were combined and referred to as "SS." All chemical 

analyses were done by the Wisconsin State Laboratory of Hy- 
giene in accordance with the guidelines of the U.S. Environ- 
mental Protection Agency [Wisconsin State Laboratory of Hy- 
giene, 1993] or by USGS water quality laboratories in 
accordance with standard analytical procedures described by 
Fishman and Friedman [1989]. A detailed summary of collec- 
tion procedures and quality assurance and quality control is 
given by Graczyk et al. [1993]. A few EWI samples were col- 
lected concurrently with automated samples to develop coef- 
ficients to correct for concentration differences between the 

automatic samplers and the more representative integrated 
EWI samples. Correction coefficients, computed as the ratio of 
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Table 1. Characteristics of Eight Streams Used in This Study 

Site Name 

U.S. Geological Drainage Flashiness Average 
Survey Station Area, Index, Relative 

Number km2 Qs/Q 95 Flashiness Rank Constituents* 

Average Number 
of Samples 
per Year 

Bower Creek 04085119 38.3 415.0 1.0 

Brewery Creek 05406470 27.2 41.2 2.0 
Eagle Creek 05378185 37.0 3.4 7.7 
Garfoot Creek 05406491 14.0 4.4 6.7 

Joos Valley Creek 05378183 15.3 3.5 6.7 
Kuenster Creek 054134435 24.9 7.6 4.7 
Otter Creek 040857005 24.6 12.0 3.0 
Rattlesnake Creek 05413449 109.8 8.0 4.3 

TP/solids 
TP/sediment 
TP/solids 
TP/sediment 
TP/solids 
TP/solids 
TP/solids 
TP/solids 

195 

100 

100 

93 
107 

98 

172 
117 

Here Qs/Q95 is the ratio of the 5th and 95th percentiles of flow. 
*TP is total phosphorus, solids is suspended solids, and sediment is suspended sediment. 

the EWI sample to the automated sample, ranged from 0.9 to 
1.0. Data collection periods for these sites vary, but each was 
sampled during 1992-1994. Included in this period was a rel- 
atively dry year (1992), a relatively wet year (1993), and a 
relatively normal year (1994). 

The responsiveness of flow differed widely among the 
streams because of the differences in surficial deposits and 
slopes of the terrain in the watersheds [Rappold et al., 1997]. To 
quantify this variability, three flow responsiveness indices were 
computed by taking the ratio of various percentiles of flow: 
Qs/Q95 (5th/95th percentile of flow), Q•o/Q9o, and Q2o/Q8o 
[Richards, 1990]. The Qs/Q95 ratio and the relative ranking of 
the eight sites on the basis of an average ranking from the three 
ratios are given in Table 1. 

2.2. Sampling Strategies and Subsampling of Data Set 

To simulate data collected using sampling strategies that are 
less intensive than used for the full integration method, the 
chemistry time series of each stream was systematically sub- 
sampled. Ten sampling strategies were simulated for TP. 
Three were fixed-period strategies (semimonthly, monthly, and 
every 6 weeks). Seven involved fixed-period plus high-flow 
samples (semimonthly plus high-flow (storm-chasing) samples, 
semimonthly plus single-stage samples, monthly plus storm- 
chasing samples, monthly plus peak flow samples, monthly plus 
single-stage samples, 6-week plus storm-chasing samples, and 
6-week plus single-stage samples). Seven sampling strategies 
were used for SS. Two were fixed-period strategies (semi- 
monthly and monthly), and five involved fixed-period plus 
high-flow samples (semimonthly plus storm-chasing samples, 
semimonthly plus single-stage samples, monthly plus storm- 
chasing samples, monthly plus peak flow samples, and monthly 
plus single-stage samples). 

Fixed-period monthly sampling was simulated by use of the 
sample collected at the most frequently sampled time of the 
month in the entire period. Semimonthly sampling was simu- 
lated with the monthly sample plus a second sample -15 days 
away from the monthly sample. Six-week sampling was simu- 
lated with every third sample in the semimonthly data set, 
unless a biweekly sample was missing, such as often occurred 
during winter. If more than one sample was collected on any of 
these dates, the sample collected closest to 11:00 A.M. CT was 
chosen (midmorning was when most manual samples were 
collected). 

After testing various protocols, the following strategy was 
selected to subsample high-flow events in an unbiased manner 
and provide, on average, approximately six to nine high-flow 

samples per year. The first step was to determine flow thresh- 
olds for a high-flow event that become more stringent with 
many events (such as during a wet year) and less stringent with 
dry conditions: 

1. For the base threshold, compute the flow at the 99th 
percentile of flow from existing flow data, i.e., the daily average 
flow that is exceeded only 1% of the time (TB). 

2. For a more stringent threshold, multiply TB by 2 (TM•). 
3. For the most stringent threshold, multiply Ta by 4 

4. For a less stringent threshold, multiply Ta by 0.75 

5. For the least stringent threshold, multiply Ta by 0.50 

The second step was to select the samples appropriate for 
the various sampling strategies by examining the 15-min flow 
data stored in the USGS Automated Data-Processing System 
(ADAPS) within the National Water Information System 
(NWlS) [USGS, 1998]. To decide which samples would have 
been collected by a storm-chasing crew, a sample was chosen 
when the instantaneous 15-min flow surpassed the high-flow 
thresholds between 6:00 A.M. and 4:00 P.M. (typical work 
hours). In examining the 15-min flow data, future flow data 
were not examined (because a sampling crew would not have 
this information). It was assumed that only one sample was 
collected in any high-flow event, as would be typical of most 
monitoring programs. In each year the sampling clock began 
on January 1 with an initial threshold set to Ta. Because TB 
represented the daily flow exceeded 1% of the time, it was 
exceeded more frequently for instantaneous flows. If the 
streamflow exceeded Ta, the sampling crew would assumedly 
take -2 hours to reach the stream, so the sample collected 
closest to 2 hours after flow exceeded Ta was chosen. Once a 
sample was chosen in a month, the threshold became more 
stringent for the next high-flow event in that month because a 
sampling crew would not want to use its total budget in a single 
month. Therefore the threshold was set to TM•, similar to what 
may be actually done. If a second sample was selected in a 
given month, the threshold was raised to T•2 for the next 
event. If conditions were dry and 2 full months passed without 
selection of a high-flow sample, the threshold was relaxed to 
Tz• • to try to ensure that high-flow samples would be collected. 
If 4 full months passed without selection of a high-flow sample, 
the threshold was further relaxed to Tz•2. Once the first high- 
flow sample of a month was collected, the threshold was always 
set to T• and set to Ta the following month. These protocols 
generally resulted in slightly less than six high-flow samples per 
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year in a dry year and slightly more than six high-flow samples 
in a wet year. 

One strategy that is sometimes attempted for collecting sam- 
ples over the widest range in flow conditions is to try to collect 
samples at peak flow in specific high-flow events. This is next to 
impossible to do in reality without collecting several samples, 
but it could be simulated in this study. Therefore the sample 
collected nearest peak flow, regardless of the time of day, was 
chosen for each high-flow event sampled by the hypothetical 
storm-chasing crew. 

Another strategy to collect high-flow samples is to use sin- 
gle-stage samplers. For this strategy the samplers were simu- 
lated to be set at depths equivalent to flows of T B, TM•, and 
TM2. Samples were then selected closest to when the flow first 
exceeded these thresholds regardless of the time of day. Only 
one sample per month was selected for each threshold, and a 
maximum of three samples were selected for each threshold 
per year; therefore a maximum of nine single-stage samples 
were chosen each year. Replicate data sets for each strategy 
could not be generated because of the very specific sampling 
strategies simulated. 

2.3. Load Computation 

Daily, event, and annual loads for TP and SS were previously 
computed for each site by use of the integration method de- 
scribed by Porterfield [1972]. All water quality data and daily, 
monthly, and annual streamflow and loads were publi.shed in 
annual USGS reports and stored in NWIS databases. 

Annual loads for TP and SS were estimated for three study 
periods to simulate the length of typical monitoring studies: 1 
year (dry (1992) and wet (1993)), 2 years (1992-1993), and 3 
years (1992-1994). Only 6 months of data were used for 1994 
to simulate the typical 2.5-year sampling period of NAWQA. 
Annual loads (calculated by summing daily loads) and annual 
standard errors of the predictions of those loads (calculated 
using daily standard errors of the predictions) were estimated 
by a regression approach by use of the Estimator program 
[Cohn et al., 1989]. In this study, estimated daily loads L were 
computed based on the relations between constituent load (in 
kilograms) and two variables: streamflow Q (in cubic meters 
per day) and time of the year T (in radians). The general form 
of the model was 

log (L) = a + b[log (Q) - c] + d[log (Q) - c] 2 

+ e (sin T) + f(cos r). (1) 

Values for the regression coefficients (a, b, c, d, e, and f) 
in (1) were computed for each site and for each time period by 
the use of multiple regression analyses between daily loads 
(daily average streamflows multiplied by instantaneous mea- 
sured concentrations, in milligrams per liter) and daily stream- 
flows Q and time of the year T. For each sampling strategy and 
for each time interval, only terms that were significant at P < 
0.05 were included in the regression. Because a logarithmic 
transformation was used in (1), daily loads were adjusted to 
account for a retransformation bias by use of the minimum 
variance unbiased estimate (MVUE) procedure (see Cohn et 
al. [1989] for a complete discussion). 

2.4. Evaluation Methods 

Two approaches are typically used to evaluate the results 
generated using regression equations. The first compares the 
magnitude of the standard errors in the predictions from var- 

ious regression equations. The second examines the errors in 
the loads of the regression equations by comparing the esti- 
mated loads with the true loads. The standard errors in the 

predictions (SEs) are commonly used to place confidence in- 
tervals on estimates generated by regression equations. There- 
fore the SEs can be used to compare and evaluate the various 
strategies to collect the data used in the regressions, and the 
strategy resulting in the smallest SEs is considered to be best. 
SEs for each annual load estimate were computed for each 
regression equation used for each stream for each simulation 
period. A root-mean-square standard error (RMSSE) was 
used to combine the SEs estimated for each of the eight 
streams for each year in the 3-year simulation period (24 in- 
dividual SEs): 

RMSSE = [Sum (SE2)Iø'5/N. (2) 

Prior to computing the RMSSEs, all annual SEs were con- 
verted into a percentage of the true annual load for the specific 
streams so that each error in an annual load was equally rep- 
resented. 

The SEs of these estimates were dependent only upon the 
variability between the measured and predicted loads for the 
days in which data were collected; therefore the SEs may not 
incorporate all the variability that occurred during unmoni- 
tored periods or systematic biases incorporated into the data 
set. The estimated annual loads were compared with the true 
loads to try to incorporate all of the errors. The overall errors 
were dependent on the magnitude of two components: accu- 
racy and precision. In this study, the true annual loads were 
computed by the integration approach, using all of the data 
available for the defined periods. The accuracy or bias repre- 
sents the average or median difference between the estimates 
and the true values. The precision represents the measure of 
the spread or variance of the errors (0 -2 , computed as the 
standard deviation of the errors squared). These two compo- 
nents were combined into one overall estimated error called 

the normalized mean square error (MSE) [Preston et al., 1989]: 

MSE = Bias 2 + o -2. (3) 

The overall errors of the various approaches were also com- 
pared using median absolute errors (MAEs) and average ab- 
solute errors (AAEs). To combine the errors for the eight 
streams and allow comparison among streams and years, all 
loads were converted to yields (load per unit area), and errors 
(MSE, bias, SE, MAE, and AAE) were normalized as percent- 
age of the true annual yield as determined by the integration 
method. 

3. Results 
3.1. "True" Yield Estimations 

Annual yields for each of the eight sites were computed 
using all of the data collected at each site during 1992-1994 
using the integration method (Table 2). The annual TP yields 
ranged from 19 to 678 kg km -2 (average annual yields ranged 
from 61 to 315 kg km-2), and SS yields ranged from 2500 to 
353,000 kg km -2 (average annual yields ranged from 15,600 to 
137,000 kg km-2). For each stream the highest annual yield 
occurred in 1993 (wet year), and in most cases the lowest 
annual yield occurred in 1992 (dry year). 

3.2. Comparison of Errors in the Predictions 

Subsets of the data, representing those that would have been 
collected using the various sampling strategies, were used to 
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Table 2. Total Annual Phosphorus and Suspended Solids and Sediment Yields for the Eight Streams Studied 

Total Phosphorus Load, kg kn1-2 Suspended Solids and Sediment, kg kn1-2 

Site Name 1992 1993 1994 Average 1992 1993 1994 Average 

Bower Creek 177 248 104 177 43,100 251,000 57,100 
Brewery Creek 19 181 56 85 2,500 90,500 27,600 
Eagle Creek 82 217 144 148 74,600 194,000 140,000 
Garfoot Creek 70 209 69 116 14,000 70,200 21,700 
Joos Valley Creek 103 189 149 147 74,300 172,000 126,000 
Kuenster Creek 52 678 166 299 29,300 353,000 116,000 
Otter Creek 35 94 55 61 9,100 29,700 7,900 
Rattlesnake Creek 131 632 182 315 48,600 292,000 69,400 

117,000 
40,200 

136,000 
35,300 

124,000 
166,000 

15,600 
137,000 

All loads were estimated by use of the integration method. Yields are given in load per unit area. 

estimate annual loads for the specific time periods using the 
Estimator program. In addition to daily, monthly, and annual 
loads, the program generates the SEs of these estimates. The 
24 annual SEs for the 3-year study duration were combined in 
an overall RMSSE by use of (2) for each sampling strategy for 
TP and SS (Table 3). 

For TP, RMSSEs ranged from 12 to 208% of the true yields. 
The lowest RMSSE resulted from using all of the data, but this 
is not a sampling strategy that one would typically consider if a 
regression approach was going to be used. In addition, the SEs 
computed for this strategy are biased low because of autocor- 
relation among samples in the entire data set. Therefore, on 
the basis of RMSSE alone, fixed-period monthly sampling plus 
storm chasing, with a RMSSE of 23% of the true yield, would 
seem to be the most effective approach to estimate annual TP 
loads. The next most effective strategy appears to be semi- 
monthly plus storm chasing followed by 6-week sampling plus 
storm chasing. The worst strategy would be to collect samples 
every 6 weeks with no additional high-flow samples. 

For SS, RMSSEs ranged from 19 to 72% of the true yield. 

On the basis of RMSSEs alone, sampling twice a month would 
seem to be the most effective strategy to estimate annual SS 
loads; however, monthly and monthly plus storm chasing pro- 
vided similar RMSSEs of -27%. Monthly plus peak flow sam- 
ples, monthly plus single-stage samples, and semimonthly plus 
single-stage samples all resulted in RMSSEs > 55%. 

3.3. Comparison With the Integration Approach 

RMSSEs demonstrate how well regression equations fit the 
small, discontinuous data sets collected by means of the vari- 
ous sampling strategies, but they reflect neither the total vari- 
ation between the water quality constituent and the indepen- 
dent variables nor possible biases in the analyses. Therefore 
the estimated annual yields were compared with the true yields 
so that biases, variances, and overall errors could be computed. 

3.3.1. Biases in load estimates. The effects of the various 

sampling strategies on the estimation of annual loads were 
examined for 1-, 2-, and 3-year study durations. The 3-year 
period is discussed first. Median biases in the annual yields 
estimated using each sampling strategy for this period are 

Table 3. Summary of Errors from the 3-Year Study Duration for the Eight Streams Studied 

Errors in Comparison With True Yields 
Model Root- 

Mean-Square Mean Root-Mean- 
Standard Median Square Square 

Sampling Strategy Error Bias Variance Error Error 

Median 
Absolute 

Error 

Total Phosphorus 
All data 12' 55 4,700 7,800 88 
Semimonthly 77 10' 1,700' 1,800' 43' 
Semimonthly plus storm chasing 29* 46 7,200 9,300 96 
Semimonthly plus single stage 77 89 120,000 128,000 357 
Monthly 56 -3' 22,300 22,300 149 
Monthly plus storm chasing 23' 51 5,400 8,000 90 
Monthly plus peak flow 38 92 17,200 25,600 160 
Monthly plus single stage 84 81 45,900 52,400 229 
6-week 208 9' 368,000 368,000 606 
6-week plus storm chasing 32 66 11,900 16,300 128 
6-week plus single stage 93 114 139,000 152,000 390 

Suspended Solids and Sediment 
All data 23' 64 4,700 8,800 94 
S emimonthly 19' - 10* 2,000* 2,100' 46 * 
Semimonthly plus storm chasing 37 35 5,900 7,100 84 
Semimonthly plus single stage 55 99 22,300 32,000 179 
Monthly 27 - 26 2,900 3,500 59 
Monthly plus storm chasing 28 33 4,500 5,600 75 
Monthly plus peak flow 72 120 20,600 34,800 187 
Monthly plus single stage 59 126 32,800 48,600 221 

55 

33* 
46 

89 
32* 

51 

92 

81 
41 

66 
114 

64 

28* 
41 

99 

32* 
40 

120 
126 

All errors are given in percentage of the true yield computed by use of the integration method with all available data. 
*The most effective sampling strategies, based on the lowest error statistic. 
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Figure 3. Biases (in percent) and mean square errors (in percent squared, which is percent difference from 
true yield estimated by the integration method) for total phosphorus for various sampling strategies for the 
eight studied streams. Each group of four bars is given in the following order: 1 year (dry), 1 year (wet), 2 
years, and 3 years. The all-data and 6-week strategies were used for the 3-year periods only. (All, all data; SM, 
semimonthly; SMPS, semimonthly plus storm chasing; SMSS, semimonthly plus single stage; MON, monthly; 
MPS, monthly plus storm chasing; MPP, monthly plus peak flow; MSS, monthly plus single stage; 6W, 6-week; 
6WPS, 6-week plus storm chasing; and 6WSS, 6-week plus single stage.) 

shown as bold lines in Figure 3 (TP) and Figure 4 (SS) and are 
summarized in Table 3. Median biases were used to minimize 

the effects of a few outliers. Median biases ranged from almost 
no bias for some fixed-period sampling strategies to >100% 
for some strategies with additional high-flow samples. All 
fixed-period sampling strategies (6-week, monthly, and semi- 
monthly) resulted in median biases <26% of the true annual 
yields of TP and SS; however, all yields estimated by use of 
fixed-period sampling plus any type of high-flow sampling re- 
sulted in positive biases >33%. All of the biases associated 
with high-flow sampling were positive, indicating that the es- 
timated yields were greater than the true yields. In general, 
examining average (rather than median) biases resulted in the 
same general conclusions. 

The two other sampling period lengths showed similar biases 

as those found for the 3-year period: fixed-period sampling 
resulted in biases less than those produced with additional 
high-flow samples. In almost all cases, positive biases were 
largest when fixed-period sampling was supplemented with 
peak flow or single-stage samples. For TP, almost all of the 
fixed-period sampling strategies resulted in yields with almost 
no bias; however, for SS, fixed-period sampling generally re- 
sulted in negatively biased yields. The largest negative biases 
for TP and SS were for monthly sampling during a wet year. 

When all of the data for each site were used in the regres- 
sions, there was a positive bias >50%. The mean and median 
biases were similar. 

3.3.2. Variance in yield estimates. A very small bias does 
not necessarily mean that a sampling strategy produced small 
errors in annual loads if the variance in estimated yields is very 
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Figure 4. Biases (in percent) and mean square errors (in percent squared, which is percent difference from 
true yield estimated by the integration method) for suspended sediment and solids for various sampling 
strategies for the eight studied streams. Each group of four bars is given in the following order: 1 year (dry), 
1 year (wet), 2 years, and 3 years. The all-data strategy was only used for the 3-year periods. 

large. Therefore we examined the variance in the errors in the 
annual yield estimates (Table 3 and Figures 3 and 4). For the 
3-year period (fourth bar in each group in Figures 3 and 4; 
6-week strategies were examined for the 3-year period only), 
the variance in the errors ranged from 1700 to 368,000 for TP 
and 2000 to 32,800 for SS. For both TP and SS, variance in the 
errors was lowest for semimonthly sampling. For TP the sec- 
ond lowest variance was for monthly sampling plus storm chas- 
ing and the third lowest was for semimonthly sampling plus 
storm chasing. For SS the second lowest variance was for 
monthly sampling, and the third lowest was for monthly sam- 
pling plus storm chasing. All sampling strategies for SS with 
additional high-flow samples increased the variance. For both 
TP and SS, high-flow samples collected near peak flow or with 
single-stage samplers increased the variance from that esti- 
mated for storm chasing. 

Different study durations produced very different variances 
compared to those found for the 3-year period, but in general, 

variances were consistently lowest for monthly or semimonthly 
sampling supplemented by storm chasing and monthly and 
semimonthly sampling for longer periods. The magnitude of 
the variance did not appear to have any consistent relation to 
the duration of the study. Sometimes 1 year of data resulted in 
small errors (such as for semimonthly sampling and monthly 
sampling with storm chasing for both TP and SS) and some- 
times in large errors (such as for semimonthly sampling for 
SS). In many cases for TP and SS, combining 2 or 3 years of 
samples resulted in variances larger than for each of the indi- 
vidual years, especially if high-flow samples were included. The 
variances of the errors when all of the data were used in the 

regressions were consistently small. 
3.3.3. Overall mean square error in yield estimates. To 

evaluate the overall errors of the various sampling strategies, 
the biases and variances were combined into an MSE using (3) 
(Table 3 and Figures 3 and 4). For the 3-year period the MSEs 
ranged from -1800 to 368,000 for TP and 2100 to 48,600 for 
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Table 4. Summary of Median Absolute Errors for the Eight Streams Studied 

Median Absolute Error, % 

Sampling Strategy 1 Year (Dry) 1 Year (Wet) 2 Years 3 Years 

Total Phosphorus 
All data 55 

Semimonthly 18 (105)* 26 (26)* 32 (52)* 33 (36)* 
Semimonthly plus storm chasing 23 (44)* 26 (28)* 43 46 
Semimonthly plus single stage 38 67 80 89 
Monthly 25 38 40 32 (76)* 
Monthly plus storm chasing 27 43 54 51 
Monthly plus peak flow 51 101 105 92 
Monthly plus single stage 53 129 103 81 
6-week 41 

6-week plus storm chasing 66 
6-week plus single stage 114 

Suspended Solids and Sediment 
All data 64 

Semimonthly 37 (720)* 51 20 (39)* 28 (35)* 
Semimonthly plus storm chasing 54 (59)* 24 (25)* 36 41 
Semimonthly plus single stage 87 120 108 99 
Monthly 50 (54)* 70 45 32 (42)* 
Monthly plus storm chasing 72 26 (32)* 55 40 
Monthly plus peak flow 112 122 170 120 
Monthly plus single stage 116 148 133 126 

All errors are given in percentage of the true yield computed by use of the integration method with all 
available data. 

*The strategies yielding the lowest MAEs for each period. The average absolute error for the strategy 
with the lowest MAE for the period is listed in parentheses. 

SS. To evaluate the MSEs in terms of an approximate percent 
error, the root-mean-square error was computed (Table 3). 
The lowest overall errors then equate to -45% of the true 
annual yields. For both TP and SS, MSEs were lowest for 
fixed-period, semimonthly sampling. Monthly sampling plus 
storm chasing and semimonthly sampling plus storm chasing 
were in the top four strategies for both TP and SS. In all cases 
for SS, additional high-flow samples increased the MSEs, es- 
pecially for peak flow and single-stage samples. MSEs for 
yields estimated from semimonthly sampling plus storm sam- 
ples were slightly higher than those from monthly sampling 
plus storm samples. 

Different study durations once again produced very differ- 
ent MSEs compared to those found for the 3-year period, 
primarily because the variances of the errors were, in general, 
much larger than the biases squared. In general, MSEs were 
consistently lowest for monthly and semimonthly samples sup- 
plemented with storm chasing and for fixed-period monthly 
and semimonthly sampling for longer periods; thus these ap- 
pear to be the most effective overall sampling strategies. 

The MSEs, when all of the data were used in the regression, 
were consistently a little larger than for monthly and semi- 
monthly sampling and monthly or semimonthly sampling sup- 
plemented by storm chasing. 

3.3.4. Overall median absolute errors. Another way to 
evaluate which of the sampling strategies provided the best 
annual load estimates is to compare the median absolute er- 
rors (MAEs) (Tables 3 and 4). This approach removes the 
importance of the sign of the error and also removes the 
sensitivity to outliers. The variance of the errors, previously 
described, was very sensitive to a few outliers. For the 3-year 
period the MAEs ranged from -28 to 126%. For both TP and 
SS the fixed-period monthly and semimonthly sampling re- 
sulted in the smallest errors, and additional high-flow samples 

always increased the MAEs. The largest errors generally re- 
sulted from the addition of peak flow and single-stage samples. 

For all sampling period lengths (Table 4), semimonthly sam- 
pling consistently had one of the smallest MAEs; however, 
MAEs were comparable for semimonthly sampling plus storm 
chasing for 1-year periods and for monthly sampling for 
greater than 2-year periods. For all sampling durations, addi- 
tional peak flow and single-stage samples resulted in the larg- 
est MAEs. 

3.4. Effects of Stream Flashiness on Errors 

Larger biases and overall errors in load estimations might be 
expected for more flashy streams than for less flashy streams. 
To test this hypothesis, the average absolute error (AAE) for 
each sampling strategy for the 3-year simulation period was 
computed (Figure 5). An AAE was used rather than an MSE 
because only three errors in annual loads were used for each 
point (insufficient to compute an accurate variance). As evi- 
dent from Figure 5, the AAEs appear to be unrelated to the 
relative flashiness of the stream. The AAEs for Bower and 

Brewery Creeks (the two flashiest streams with thick lines in 
Figure 5) generally bracketed the AAEs for the rest of the 
streams. 

In a few cases the regression approach very poorly simulated 
the actual yields. For Brewery Creek the addition of single- 
stage, high-flow samples resulted in very large errors, especially 
for TP. For Kuenster Creek, very large errors occurred in TP 
yield estimates for 6-week and monthly sampling; these errors 
were greatly reduced with additional fixed-period samples 
(semimonthly) or additional storm-chasing samples. Because 
of the very large errors in just a few cases, especially for TP, 
median biases and median absolute errors appear to be an 
appropriate statistic to use in comparing sampling strategies. 
These few very large errors explain the wide range in variances 
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Figure 5. Average absolute errors (percent difference from true yield estimated by the integration method) 
for total phosphorus and suspended sediment and solids for the eight studied streams. The relative flashiness 
of each stream is identified on Figure 5. 

shown in Figures 3 and 4 and the differences in the rankings of 
the strategies relative to median absolute errors and variance 
in errors or MSEs. 

4. Discussion 

4.1. True Loads Versus Actual Loads 

The actual load in any stream cannot be determined exactly 
without accurate continuously recorded flow and concentra- 
tion data. The data used to estimate the true loads (and yields) 
in this study were collected as continuously as economically 
possible: fixed-period samples were collected throughout the 
entire period (at least semimonthly during the open water 
period and monthly during winter) and throughout most high- 
flow events [Graczyk et al., 1993]. Therefore use of the inte- 
gration method to compute loads with these data is thought to 
provide the best approximation possible. Changes in concen- 
tration between high-flow events are thought to be small, but 
even if concentrations did change, the effect on annual loads 
would not be large because of the low flow between events. 

Analytical errors and errors in estimating flow do not affect 
the results of comparisons presented here because the same 
data were used by all of the approaches to estimate loads. A 
slight systematic bias, however, may have been inadvertently 
introduced through the use of raw water quality data stored in 
the USGS database. In computing a few annual loads with the 
integration approach, correction coefficients were applied to 
some samples collected with automated samplers. These coef- 
ficients were always <10% and involved <20% of the load 
years. Therefore the line of reference in Figures 3 and 4 may 
be shifted very slightly upward, resulting in negative biases 
increasing slightly and positive biases decreasing slightly. 

4.2. Most Effective Sampling Strategy 

The results summarized in Tables 3 and 4 and Figures 3-5 
can be used to suggest the most effective strategy for sampling 
small streams and estimating the magnitude of errors that may 
be expected when a regression approach is used to estimate 
loads in flashy streams with small drainage areas (less than 
---100 km2). Regardless of the sampling strategy used, use of 
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the regression approach to estimate annual TP and SS loads 
for small flashy streams with a small number of samples per 
year (-30 or less) is inherently imprecise and can result in 
significant biases in annual load estimates. The smallest errors 
one can expect with either 1 or 2 years of data are -20-40% 
(median errors, average absolute errors, and approximately the 
standard deviation of the errors); additionally, with only 1 year 
of data, estimates can occasionally be very poor (compare the 
median and mean values in Table 4). With >2 years of data the 
very poor estimates appear to be eliminated, but the smallest 
errors one can expect remains -30% (median and average 
absolute errors) with a standard deviation in the errors of 
-40-45% (square root of the variance). The magnitude of the 
errors found in this study is larger than those found using the 
regression approach for large rivers [Dolan et al., 1981; Preston 
et al., 1989] but of similar magnitude to that found for smaller 
streams using either hourly or daily average streamflow in the 
regression [Walling and Webb, 1981, 1988]. However, Walling 
and Webb found consistent negative biases in the estimated 
annual loads using the regression approach compared to the 
positive biases found in this study. 

So, given a limited budget, what is the most effective sam- 
pling strategy to estimate loads in small, flashy streams? On the 
basis of the results from this study the answer depends on the 
length of the study and the reason for estimating those loads. 
If the length of the study is >2 years, fixed-period, semi- 
monthly sampling typically produces the smallest errors (least 
biased and most precise) and therefore is the most effective 
sampling strategy (see Figures 3 and 4 and Table 3). With >3 
years of data it is expected that fixed-period monthly and 
semimonthly sampling should result in similar errors, so fixed- 
period monthly sampling may be the most effective sampling 
strategy. However, longer in-depth studies are needed to com- 
pare these strategies. Therefore, for long-term monitoring 
studies that do not require load estimates in the first few years 
of the study, fixed-period sampling would be an appropriate 
sampling strategy to estimate annual loads that are unbiased 
and as precise as those estimated with additional high-flow 
samples. 

If the length of the study is 2 years or less, determining which 
sampling strategy is most effective is more complicated: one 
must weigh the tradeoffs between biased estimates and impre- 
cise estimates. All three fixed-period sampling strategies (6- 
week, monthly, and semimonthly) provided relatively unbiased 
load estimates with a regression approach; however, the vari- 
ance in the errors in annual loads with these strategies was 
often quite large and much larger than the typical interannual 
variability in the annual loads of a small stream. Fixed-period 
monthly and semimonthly sampling plus storm chasing, on the 
other hand, provided relatively precise estimates for all study 
lengths, but loads were overestimated by typically 30-50%. 
Therefore, because interannual variability in annual loads is 
generally much greater than 30-50%, the most effective sam- 
pling strategy for 1-year studies appears to be fixed-period 
monthly or semimonthly sampling supplemented with storm 
chasing (see Figures 3 and 4). Semimonthly sampling plus 
storm chasing appeared to provide slightly smaller overesti- 
mates and more precise annual loads than those estimated with 
monthly sampling plus storm chasing; however, the improve- 
ment in load estimates was comparatively small in return for 
almost doubling the sampling effort. Therefore the most effec- 
tive sampling strategy for 1-year studies is monthly sampling 
plus storm chasing. For 2-year studies, semimonthly sampling 

and monthly and semimonthly sampling plus storm chasing 
produced similar overall errors (mean square errors). There- 
fore, because semimonthly sampling (without additional high- 
flow samples) produced similarly precise estimates as the other 
two strategies without consistently overestimating the annual 
loads, it is the most effective strategy for 2-year studies. 

4.3. Effects of Different High-Flow Sampling Strategies 

When using the regression approach to compute annual 
loads, the primary reason to collect additional high-flow sam- 
ples is to help define the relation between high streamflows 
and high loads. In theory, one would hypothesize that addi- 
tional samples during high-flow events, regardless of how or 
when they were collected, would be better than having no 
additional samples. However, this study indicates these addi- 
tional samples can result in not only a positive bias in the 
annual loads estimates but also less precise overall annual 
estimates. When using the big river approach, one assumes 
that each concentration is representative of the daily average 
streamflow. This is a valid assumption if samples are collected 
at fixed periods or randomly with respect to flow. In general, 
the more random samples over a range in flow conditions, the 
better the overall data set approximates the true values. This is 
the reason that loads estimated from fixed-period, semi- 
monthly samples were better than those from monthly sam- 
ples. Semimonthly samples are more likely to be collected 
during the infrequent high flows than monthly samples; how- 
ever, it becomes a tradeoff between cost per sample and in- 
creased accuracy. 

So why do additional high-flow samples result in positive 
biases and reduced load precision instead of increased accu- 
racy? The primary reason is that the measured concentrations 
were generally higher than the actual average daily concentra- 
tion during the high-flow event. Measured concentrations typ- 
ically represent what occurs with the much higher flows early in 
the event; they do not represent the day on the whole, as some 
random sample would more likely do. When using the big river 
approach, samples should be randomly collected during high- 
flow days rather than during parts of the events. For small 
streams, strategies that result in the least random samples on 
high-flow days are the samples collected with single-stage sam- 
plers and at peak flow (see Figures 1 and 2). The most effective 
strategy examined here to collect high-flow samples is the 
approach described for storm chasing by sampling crews. Al- 
though the goal of such sampling typically is to collect samples 
during the highest flows, samples are usually collected when 
flow is decreasing and when concentrations represent the daily 
average concentration better than those measured with single- 
stage samplers or near peak flow. These concentrations are still 
usually positively biased, but the magnitude of the bias is not as 
large as with the other approaches. Therefore inability of sam- 
pling crews to immediately respond to high-flow events results 
in better load estimates for these types of streams. 

When using the integration approach, the sampling goal is to 
define all of the changes in concentration. When done most 
cost effectively, this results in many samples when flow and 
concentrations are changing rapidly and fewer samples when 
flow and concentrations are changing more slowly (Figure 2). 
If all of these data are used to compute loads with a regression 
approach, a positively biased annual load results because, once 
again, the samples are not randomly collected throughout the 
day but are more frequent when concentrations are highest. 
Loads estimated by use of all the data and the regression 
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approach, however, provided fairly precise load estimates (Fig- 
ures 3 and 4). Therefore, although the regression approach can 
be applied more easily than the integration approach and does 
provide confidence limits, if extensive data are available, the 
integration approach should be used to estimate annual loads 
to eliminate the positive biases. 

4.4. Effect of Sampling Strategies on Other Constituents 

Effects of the various sampling strategies are not expected to 
be the same for all constituents but should depend on how 
concentrations typically 'change during high-flow events. Ef- 
fects of the sampling strategies examined here for estimating 
errors in annual TP and SS loads (biases and precision) should 
reflect concentration patterns for constituents strongly associ- 
ated with sediment. However, the effects may even be more 
dramatic for constituents whose concentrations peak early in 
an event, such as some pesticides [Richards and Baker, 1993]. 
Because of dilution, concentrations of some constituents, such 
as chloride and nitrate, decrease with increases in flow. For 
these constituents, biases due to high-flow sampling are ex- 
pected to be negative rather than positive. 

4.5. Regression Compared to Other Methods 

Given the biases and imprecision in the load estimates from 
the regression approach, one may be inclined to use another 
method to estimate loads in small streams. However, because 
concentrations of TP and SS (and other sediment-derived con- 
stituents) change quickly and because the number of samples 
usually collected or able to be collected is small, the regression 
approach may be the only viable approach. In most other 
approaches one assumes that concentrations do not vary be- 
tween measurements (ratio-estimator method [Richards and 
Holloway, 1987]) or that they change linearly (usually used in 
integration methods); therefore, if streamflow and concentra- 
tions both increase between measurements, such as during a 
high-flow event that is not sampled, the load estimates will be 
severely underestimated. These biases have been documented 
when a small number of samples were collected in big rivers 
[Richards and Holloway, 1987] and have been observed to be 
even more dramatic in small streams [Walling and Webb, 1981, 
1988; this study]. Therefore the regression approach is still the 
preferred method. 

The positive biases found when samples collected early dur- 
ing high-flow events are used in the analysis are not inherent to 
the regression approach but in how the approach is used (i.e., 
using daily average flow data). Modifications have been made 
to try to improve this approach by reducing the time step of the 
model from days to hours (or less) and adding a variable in the 
regression equation (or additional equations) to describe the 
hysteresis in concentrations that occur during high-flow events 
[Walling and Webb, 1981, 1988; Thomas, 1988]. However, even 
with these refinements, the regression approach was found to 
be relatively imprecise with errors at least as large as found in 
this study; however, in contrast to that found in this study, 
these studies found the regression approach yielded negatively 
biased annual loads. 

4.6. Implications of Positive Biases in Loads 
From Small Streams 

Unit area yields for small streams have been shown to be 
larger than those for large rivers even if the environmental 
characteristics of the two basins are similar [Richards, 1989]. 
Because of this finding, delivery coefficients have been added 

to watershed models to describe the loss in sediment and 

nutrient loads with increasing basin size. Most loads computed 
for small streams were based on small data sets and were 

collected with the sampling strategies discussed above; thus 
such loads may incorporate positive biases similar to those 
measured in this study. Therefore the comparatively high unit 
area yields computed for small streams and the need for de- 
livery coefficients in watershed models may not only be due to 
deposition occurring in all but very high-flow years but also in 
part due to the strategies used to sample and compute loads in 
small streams. 

5. Summary and Conclusions 
Regardless of the sampling strategy used, the regression 

approach using daily average streamflow is a relatively impre- 
cise means of estimating annual total phosphorus and sus- 
pended solids and sediment loads for small streams when only 
a few water quality samples are collected annually. For the 
most effective strategy the median absolute error was -30% 
based on comparison with load estimates made with the inte- 
gration method and all available data. The most effective sam- 
pling strategy to estimate loads in small streams depends on 
the length of the study. For 1-year studies, fixed-period 
monthly sampling supplemented with storm chasing appears to 
be the most effective sampling strategy because it results in the 
most precise annual loads, even though this approach usually 
results in overestimations by 25-50%. For studies of -2 or 3 
years in length, fixed-period semimonthly sampling appears to 
provide not only the least biased but also the most precise 
estimates. 

Additional high-flow samples are commonly collected to 
help define the relation between high flow and high loads. 
However, these additional samples can result not only in pos- 
itive biases in the load estimates but also in less precise annual 
estimates because concentrations in these samples do not rep- 
resent the average concentrations for the day. Single-stage 
sampling and peak flow sampling resulted in the most biased 
and often the most imprecise estimates. The most effective 
strategy for collecting high-flow samples that represent a daily 
average concentration was the approach described for storm 
chasing because sampling crews generally do not respond 
quickly enough to consistently bias the samples toward the 
high concentrations during increasing flow. 
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